sort by
approximate search
1shortlisttitle datasearch history  
results search [or] ISN:0000000116810655 | 1 hits
Person
ISNI: 
0000 0001 1681 0655
Name: 
Edelsbrunner, H.
Edelsbrunner, Herbert
Herbert Edelsbrunner
Herbert Edelsbrunner (American-Austrian computer scientist)
Herbert Edelsbrunner (austerriksk informatikar og matematikar)
Herbert Edelsbrunner (österreichischer Informatiker und Mathematiker)
Herbert Edelsbrunner (österrikisk datavetare och matematiker)
Herbert Edelsbrunner (østerriksk informatiker og matematiker)
Herbert Edelsbrunner (østrigsk informatiker og matematiker)
Herbert Edelsbrunner (wiskundige uit Oostenrijk)
Dates: 
1958-
Creation class: 
cre
Language material
Text
txt
Creation role: 
author
contributor
Related names: 
Guibas, Leonidas J.
Harer, John L. (1952- ))
Imai, Hiroshi (1958-)
Institute of Science and Technology - Austria Klosterneuburg Affiliation (see also from)
Overmars, Mark H.
Overmars, Mark H. (1958-)
Overmars, Markus Hendrik (1958-)
Preparata, Franco P.
Sharir, Micha
Springer Science+Business Media
Springer-Verlag (Berlin)
Technische Universität Graz
University of Waterloo. Department of Computer Science
Welzl, Emo (1958-)
今井, 浩 (1958-)
Titles: 
Algorithms in combinatorial geometry
complexity of cells in three-dimensional arrangements., The
complexity of cutting complexes, 1987, The
complexity of many faces in arrangements of lines and segments, The
Computational topology : an introduction
Computing the connected components of simple rectilinear geometrical objects in D-space
Constructing belts in two-dimensional arrangements with applications.
Counting triangle crossings and halving planes
Covering convex sets with non-overlapping polygons.
Cutting dense point sets in half
Diameter, width, closest line pair, and parametric searching.
Euclidean minimum spanning trees and bichromatic closest pairs
Extending Persistence Using Poincare and Lefschetz Duality
Fast software for box intersections
Finding Extreme Points in Three Dimensions and Solving the Post-Office Problem in the Plane
Finding transversals for sets of simple geometric figures.
Geometry and topology for Mesh generation
Graphics in Flatland : a case study
Hierarchical morse complexes for piecewise linear 2-manifolds
Implicitly representing arrangements of lines or segments
improved algorithm for constructing kth-order Voronoi diagrams., An
Improved bounds on weak epsilon-nets for convex sets
Interface surfaces for protein-protein complexes
Intersection problems in computational geometry
Kumiawase kikagaku no arugorizumu
Lipschitz Functions Have L p -Stable Persistence
Local and Global Comparison of Continuous Functions
Loops in reeb graphs of 2-manifolds.
Minimum polygonal separation
Morse-smale complexes for piecewise linear 3-manifolds
New approach to rectangle intersections: Part II.
number of extreme pairs of finite point-sets in Euclidean spaces., The
On arrangements of Jordan arcs with three intersections per pair
On the Equivalence of Some Rectangle Problems
On the Number of Furthest Neighbour Pairs in a Point Set
Optimal algorithm for constructing the weighted voronoi diagram in the plane.
optimal algorithm for intersecting line segments in the plane, An
Optimal point location in a monotone subdivision.
Optimal time bounds for some proximity problems in the plane.
Points and triangles in the plane and halving planes in space
Probing convex polygons with x-rays.
Ranking intervals under visibility constraints
Rectangular point location in d dimensions with applications.
Searching for empty convex polygons
Simplification of three-dimensional density maps.
Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms
Space-Optimal Solution of General Region Location.
Stability of Persistence Diagrams
Testing the necklace condition for shortest tours and optimal factors in the plane
Tetrahedrizing point sets in three dimensions
tight lower bound on the size of visibility graphs., A
Time-varying reeb graphs for continuous space-time data
topological hierarchy for functions on triangulated surfaces., A
Topologically sweeping an arrangement, 1986:
Zooming by Repeated Range Detection
組合せ幾何学のアルゴリズム
Notes: 
Thesis (doctoral)--Technische Universität Graz, 1982
Sources: 
VIAF DNB LAC LC NDL NKC NSK NUKAT SUDOC WKD
BOWKER
NTA
TEL